8(8412)74-58-38
(с 10-00 до 20-00 МСК)
Зачётик.Ру - помогаем студентам в учёбе

У нас можно недорого заказать курсовую, контрольную, реферат или диплом

Главная / готовые работы / Дипломные работы / Математика

Методика изучения асимптотики резольвенты лапласиана с частой сменой граничных условий - Дипломная работа

Содержание

Введение 3

Постановка задачи и формулировка результатов 3

Формальное построение асимптотик. 5

Обоснование асимптотик. 17

Литература 22

Введение (выдержка)

Рассмотрена модельная краевая задача для лапласиана в единичном круге с

часто и периодически чередующимся типом граничных условий в случае, когда

предельной является задача Дирихле.

Постановка задачи и формулировка результатов. Краевые эллиптиче-

ские задачи с часто чередующимся типом граничных условий возникают в раз-

личных приложениях, например, при исследовании собственных значений часто

закрепленной мембраны, в задачах нефтехимии и в других областях. В настоящей

работе рассматривается краевая задача для оператора Лапласа в круге с часто и

периодически чередующимся типом граничных условий.

Пусть x = (x1, x2) - декартовы координаты, " = 2N−1 - малый параметр, N ≫ 1

целое число, D - единичный круг с центром в начале координат, (r, ) - полярные

координаты. Через

" обозначим объединение N открытых непересекающихся ле-

жащих на @D дуг, длиной 2" каждая (0 <  < /2), расположенных так, что

любая из этих дуг получается из соседней поворотом на " относительно начала

координат(см. рис.). Определим 􀀀" как дополнение

" до @D. Под часто и периоди-

чески чередующимся типом граничных условий мы будем понимать случай, когда

на

" задается граничное условие Дирихле, а на 􀀀" - граничное условие Неймана

[1].

Основная часть (выдержка)

Здесь  < 0 - некоторое фиксированное число, f ∈ C∞

0 (¯D) - заданная функция.

В этой работе на основе метода пограничного слоя будет построена асимптоти-

ка. Базовой идеей данного построения является использование пограничного слоя

в окрестности границы @D с целью удовлетворения граничных условий задачи

(1).

Теорема 1. Асимптотическое разложение решения задачи (1) имеет вид:

u" = uex

" (x, ) + (r)umid

" (, , ),

где (r)  бесконечно дифференцируемая срезающая функция, равная единице

при r > 2

3 и нулю при r < 1

3,

uex(x) = u0(x) + "u1(x) + "2u2(x) + "3u3(x) + .

и

umid() = "1() + "22() + "33() + .,

где  = (1, 2) =

Функции 1(), 2(), 3() найдены как решения некоторых краевых задач.

Заключение (выдержка)

Обоснование асимптотик. В соответствии с методом пограничного слоя

асимптотику функции u" будем строить в виде суммы внешнего разложения и

пограничного слоя:

u" = uex

" (x, ) + (r)umid

" (, , ), (48)

где функции uex

" и umid

" имеют асимптотики

uex

" (x, ) = u0(x) +

NX−1

i=1

"iui(x, ), (49)

umid

" (, , ) =

XN

i=1

"ii(, , ). (50)

Подставим (48) в уравнение задачи (1) получим уравнение

−(x + )u" = −(x + )uex

" (x, ) − (x + )(r)umid

" (, , ) (51)

В силу уравнений задач (4) и (5) первое слагаемое (51) будет равно

−(x + )uex

" (x, ) = f (52)

Перепишем второе слагаемое (51):

Литература

1. Д.И. Борисов. Двупараметрические асимптотики собственных чисел Ла-

пласиана с частым чередованием граничных условий. Прикладная матема-

тика и механика, 2002. C. 36-52.

2. Р.Р. Гадыльшин. Об асимптотике собственных значений для периодически

закрепленной мембраны. Алгебра и анализ Том 10, (1998), вып. 1.

Информация о работе

Тип: Дипломная работа
Страниц: 22
Год: 2012
850 p.
Не подошла эта работа?
Узнайте стоимость написания
работы по Вашему заданию.

Закажите авторскую работу по Вашему заданию!
Контрольная работа
от 100 p.
cрок: от 1 дня
Реферат
от 600 p.
cрок: от 1 дня
Курсовая работа
от 1000 p.
cрок: от 3 дней
Дипломная работа
от 6000 p.
cрок: от 6 дней
Отчет по практике
от 1000 p.
cрок: от 3 дней
Решение задач
от 150 p.
cрок: от 1 дня
Лабораторная работа
от 200 p.
cрок: от 1 дня
Доклад
от 300 p.
cрок: от 2 дней
Заказать работу очень просто!
Вы оформляете заявку
Получаете доступ в лк
Вносите предоплату
Автор пишет работу
Получаете уведомление
о готовности
Вносите доплату
Скачиваете готовую
работу из лк
X
X