8(8412)74-58-38
(с 10-00 до 20-00 МСК)
Зачётик.Ру - помогаем студентам в учёбе

У нас можно недорого заказать курсовую, контрольную, реферат или диплом

Главная / готовые работы / Лабораторные работы / Информатика

Метод половинного деления на Паскале (Pascal) - Лабораторная работа

Содержание

1. Постановка задачи 3

2. Анализ задачи 3

3. Схема алгоритма. 6

4. Текст программы на Паскале 7

5. Результаты расчёта 8

6. Вывод 8

7. Список литературы 9

Введение (выдержка)

1. Постановка задачи

Создать программный продукт, который находит искомый корень уравнения в отрезке при помощи метода половинного деления.

sin(x-0.5)-x+1=0

Основная часть (выдержка)

Метод половинного деления.

Для этого метода существенно, чтобы функция f(x) была непрерывна и ограничена в заданном интервале [a, b], внутри которого находится корень. Предполагается также, что значения функции на концах интервала f(a) и f(b) имеют разные знаки, т.е. выполняется условие f(a)f(b) .

Обозначим исходный интервал [a, b] как [a0, b0]. Для нахождения корня уравнения f(x) = 0 отрезок [a0, b0] делится пополам, т.е. вычисляется начальное приближение x0 = (a0 + b0)/2. Если f(x0) = 0, то значение x0 = x* является корнем уравнения. В противном случае выбирается один из отрезков [a0, x0] или [x0, b0], на концах которого функция f(x) имеет разные знаки, так как корень лежит в этой половине. Далее выбранный отрезок обозначается как [a1, b1], вновь делится пополам точкой x1 = (a1 + b1)/2 и т.д. В результате на некоторой итерации получается точный корень x* уравнения f(x) = 0, либо бесконечная последовательность вложенных отрезков [a0, b0], [a1, b1], ., [ai, bi], ., таких, что f(ai)f(bi)  (i =1, 2, .), сходящихся к корню x*.

Если требуется определить корень x* с погрешностью , то деление исходного интервала [a, b] продолжают до тех пор, пока длина отрезка [ai, bi] не станет меньше 2, что записывается в форме условия bi - ai 2.

В этом случае середина последнего интервала [ai, bi] с требуемой степенью точности дает приближенное значение корня

x*  (ai + bi) / 2.

Метод половинного деления легко реализуется на ЭВМ и является наиболее универсальным среди итерационных методов уточнения корней. Его применение гарантирует получение решения для любой непрерывной функции f(x), если найден интервал, на котором она изменяет знак. В том случае, когда корни не отделены, будет найден один из корней уравнения. Метод всегда сходится, но скорость сходимости является небольшой, так как за одну итерацию точность увеличивается примерно в два раза. Поэтому на практике метод половинного деления обычно применяется для грубого нахождения корней уравнения, поскольку при повышении требуемой точности значительно возрастает объем вычислений.

Заключение (выдержка)

4. Текст программы на Паскале

program mdp;

function f(x: real): real;

begin

.

end;

var

a, b, e, c, x: real;

begin

write('a=');

read(a);

write('b=');

read(b);

write ('e=');

read(e);

c:=(a+b)/2;

while(b-a)>e do

begin

if(a)*f(c)<0 then

b:=c

else

a:=c;

.

readln;

end.


5. Результаты расчёта

Результаты требуемого расчёта:

a=1

b=3

e=0.01

a=1.0000b=2.0000f(a)=0.479425539f(b)=-0.002505013

a=1.5000b=2.0000f(a)=0.341470985f(b)=-0.002505013

a=1.7500b=2.0000f(a)=0.198984619f(b)=-0.002505013

a=1.8750b=2.0000f(a)=0.105893057f(b)=-0.002505013

a=1.9375b=2.0000f(a)=0.053629191f(b)=-0.002505013

a=1.9688b=2.0000f(a)=0.026047790f(b)=-0.002505013

a=1.9844b=2.0000f(a)=0.011893001f(b)=-0.002505013

a=1.9922b=2.0000f(a)=0.004724417f(b)=-0.002505013

x=1.996 f(x)=0.0011

Pascal

X=. на интервале [1; 3]

6. Вывод

Программа работает верно. Полученные результаты удовлетворяют требованию.

Литература

1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы – М.: Лаборатория Базовых Знаний, 2002.

2. Численные методы. Автор: Лапчик М.П., Рагулина М.И., Хеннер Е.К.; под ред. Лапчика М.П.

Примечания

Готовые решение задачи на языке Паскаль

К работе прилагается все исходники (Pascal) и отчет (Word)

Информация о работе

Тип: Лабораторная работа
Страниц: 10
Год: 2016
600 p.
Не подошла эта работа?
Узнайте стоимость написания
работы по Вашему заданию.

Закажите авторскую работу по Вашему заданию!
Контрольная работа
от 100 p.
cрок: от 1 дня
Реферат
от 600 p.
cрок: от 1 дня
Курсовая работа
от 1000 p.
cрок: от 3 дней
Дипломная работа
от 6000 p.
cрок: от 6 дней
Отчет по практике
от 1000 p.
cрок: от 3 дней
Решение задач
от 150 p.
cрок: от 1 дня
Лабораторная работа
от 200 p.
cрок: от 1 дня
Доклад
от 300 p.
cрок: от 2 дней
Заказать работу очень просто!
Вы оформляете заявку
Получаете доступ в лк
Вносите предоплату
Автор пишет работу
Получаете уведомление
о готовности
Вносите доплату
Скачиваете готовую
работу из лк
X
X