Для поиска нужного реферата введите его тему ниже:

Контрольная работа: «Элементы теории погрешностей»



Примечания к работе

В работе также есть подробное решение ( все формулы отображаются)

К работе прилагается все необходимое для сдачи (Формат: Word отчет с расчетами.

Содержание

A1. Элементы теории погрешностей.

A2. Элементы теории погрешностей.

Список литературы

Введение (выдержка)

Задание к домашней контрольной работе №1

A1. Элементы теории погрешностей.

Задание из Таблицы №1:

а) Определить какое равенство точнее.

б) Округлить сомнительные цифра числа, оставив верные знаки: 1) в узком смысле; 2) в широком смысле. Определить предельные абсолютную и относительную погрешности результата.

в) Найти предельные абсолютные и относительные погрешности чисел, если они имеют только верные цифры: 1) в узком смысле; 2) в широком смысле.

A2. Элементы теории погрешностей.

a) Вычислить и определить предельные абсолютную и относительную погрешности результата.

b) Вычислить и определить предельные абсолютную и относительную погрешности результата.

c) Вычислить и определить предельные абсолютную и относительную погрешности результата пользуясь общей формулой погрешности: 1) в узком смысле; 2) в широком смысле.

Выдержка из основной части

Задание к домашней контрольной работе №1

A1. Элементы теории погрешностей.

Задание из Таблицы №1:

а) Определить какое равенство точнее.

б) Округлить сомнительные цифра числа, оставив верные знаки: 1) в узком смысле; 2) в широком смысле. Определить предельные абсолютную и относительную погрешности результата.

в) Найти предельные абсолютные и относительные погрешности чисел, если они имеют только верные цифры: 1) в узком смысле; 2) в широком смысле.

Таблица № 1


а) Определить какое равенство точнее.

1. Определить. Какое равенство точнее: или

Решение: находим значения данных выражений с большим числом десятичных знаков: Затем вычисляем предельные абсолютные погрешности, округляя их с избытком:


Предельные абсолютные погрешности составляют



Так как , то равенство более точное.

Ответ: Равенство определено точнее.

б) Округлить сомнительные цифра числа, оставив верные знаки: 1) в узком смысле; 2) в

широком смысле. Определить предельные абсолютную и относительную погрешности

результата.

1. Округлить сомнительные цифры числа 0,0589480,00447, оставив верные знаки в узком смысле.

Решение: Пусть 0,0589480,00447=а. Согласно условию, погрешность . Это значит, что в числе 0,058948 верными в узком смысле являются три цифры. По правилам округления чисел найдем приближенное значение числа, сохранив тысячные доли:

;

Так как полученная погрешность меньше 0,0005, то приближенное число имеет только верные знаки.

Определим предельную относительную погрешность приближенного числа 0,004522 Для этого используем определение предельной погрешности:

Тогда получим .

Ответ: .

2)

Дано приближенное число 1282,789 0,83%, где 1282,789*0,0083=10,6471487<10,65. Определим число верных знаков в широком смысле, используя следующее выражение 10,65<100.

Округлим 1280. 10,65+2,789=13,439.

Так как 13,439<100, то оставшиеся цифры результата 1280 верны в широком смысле. Таким образом, 128013,439.

Определим предельную относительную погрешность приближенного числа 128013,439. Для этого используем определение предельной погрешности: , .

Тогда получим 13,439/1280=0,0104=1%.

Ответ: .


в) Найти предельные абсолютные и относительные погрешности чисел, если они имеют

только верные цифры:

1) в узком смысле;

Пусть число 67,607 имеет только верные в узком смысле цифры в записи. Тогда предельная абсолютная погрешность равна ∆a = 0,0005, а предельная относительная погрешность равна δa = ∆a/a = 0,0005/67,607 ≈ 0,0000074= 0,00074%.

Ответ: .

2) в широком смысле.

Дано приближенное число 6,453.

Так как это число имеет только верные цифры в широком смысле, то определим предельную абсолютную погрешность числа из выражения . Тогда .

Следовательно, для предельной абсолютной погрешности имеем 0,001. Для определения предельной относительной погрешности числа можно использовать выражение .

Тогда получим 0,001/6,453=0,00015=0,015%.

Ответ: .

Заключение (выдержка)

A2. Элементы теории погрешностей.

a) Вычислить и определить предельные абсолютную и относительную погрешности результата.

b) Вычислить и определить предельные абсолютную и относительную погрешности результата.

c) Вычислить и определить предельные абсолютную и относительную погрешности результата пользуясь общей формулой погрешности: 1) в узком смысле; 2) в широком смысле.

7 a)

b) c)

.


a)

а) Вычислить и определить предельные абсолютную и относительную погрешности результата. Исходное выражение , где a= b= c= m=

По правилам вычисления погрешностей арифметических выражений и функций имеем


0,08281.

Для определения предельной абсолютной погрешности выражения используем формулу . Тогда получим

2179,72265, 180,50283.

Округлим результат до верного знака 2200, при этом погрешность округления равен 20. Тогда 200. Определим число верных знаков в , . Следовательно, в остались только верные знаки. Определим предельную относительную погрешность числа : 11%.

Ответ: .

b)

b) Вычислить и определить предельные абсолютную и относительную погрешности результата. Исходное выражение , где a= b= c= m=

По правилам вычисления погрешностей арифметических выражений и функций имеем

3/2*(0,01/4,15)+2*(0,046/(7,2-2,04))+2*(0,09/6,55)= 1,5*(0,0024)+2*0,046/5,16+2*0,09/6,55=0,04891037339

Для определения предельной абсолютной погрешности выражения используем формулу . Тогда получим

(4.15^1.5*(7-2)^2)/(4.15+2.4)^2=4,92639866371, 4,92639866371*0,04891037339=0,24095199811.

Определим число верных знаков в вычисленном выражении в широком смысле, используя предельную абсолютную погрешность 4.93, при этом погрешность округления равен 0.004. Тогда 0.244.

Определим предельную относительную погрешность числа : .0,244 / 4,926 = .

Ответ: .

c) где a= b= c= m=

Вычислить и определить предельные абсолютную и относительную погрешности результата пользуясь общей формулой погрешности: 1) в узком смысле; 2) в широком смысле.

Исходное выражение , где где a= b= c= m=

Тогда по общей формуле погрешностей имеем

;

cos(7,2 × 7,2 − √(4,15)) / (((2,04) ^ (1 / 3) + 2,4 × 2,4) )^ 2.= 0,01306

Определим число верных знаков в значении .

0.000235, .

Следовательно, необходимо округлить до верных знаков

.

Ответ: .

Список литературы

1. Демидович Б.Н., Марон И.А. Основы вычислительной математики. -М.: Наука, 1966.- 664 с.

2. Бахвалов Н.С. Численные методы -М.: Наука, 1975. – 632 с.

3. Березин Н.С., Жидков Н.П. Методы вычислений. – Т.1. - М.: Наука, 1966. – 464 с.

4. Березин Н.С., Жидков Н.П. Методы вычислений. – Т.2. - М.: Физматгиз, 1962.- 640 с.

5. Самарский А.А. Теория разностных схем. - М.: Наука, 1983.

6. Иванов В.В. Методы вычислений на ЭВМ. Киев: Наукова думка, 1986.

7. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. -М.: Наука, 1986, - 288 с.

8. Сборник Задач по методам вычислений: Учебное пособие: Для вузов. / Под ред. П.И. Монастырского. - 2-е изд. перераб. и доп. -М.: Физматлит, 1994. -320 с.

9. Воробьева Г.Н., Данилова А.Н. Практикум по вычислительной математике. -М.: Высшая школа, 1990.

10. Лапчик М.П. Рагулина М.И., Хеннер Е.К. Численные методы: Уч. Пособие для ст. вузов. –М.: Изд. Центр «Академия», 2004. – 384 с.

11. Васильев Ф.П. Численные методы решения экстремальных задач: Учебное пособие для вузов - 2-е изд., перераб. и доп. -М.: Наука, Гл. ред. физ.-мат. лит, 1988. -550 с.

12. Васильев Ф.П. Методы решения экстремальных задач -М.: Наука, 1981. -400 с.

13. Марчук Г.И. Методы вычислительной математики. – М.: Наука, 1980. -536 с.

14. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. – М.: Наука, 1976. - 544 с.

15. Самарский А.А. Введение в численные методы. – 3-е изд., перераб. – М.: Наука, 1997. - 239 с.

16. Тихонов А.Н., Самарский А.А. Уравнения математической физики. – М.: Наука, 1972.

17. Шикин Е.В., Плис А.И. Кривые и поверхности на экране компьютера. Руководство по сплайнам для пользователей. – М.: Диалог-МИФИ, 1996 – 240 с.

18. Альберг Дж., Нильсон Э., Уолш Дж. Теория сплайнов и их приложения. М.: Наука, 1972.

19. Де Бор К. Практическое руководство по сплайнам. - М.: Наука, 1983.

20. Foley J.D., van Dam A., Feiner S.K., Hugues J.F. Computer graphics. Principles and practice. Addison-Wesley Pub. Com. 991.

21. Боглаев Ю.П. Вычислительная математика и программирование. М.: Высшая школа, 1990.

22. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. -М.: Физ.-мат. лит. 1967.

23. Хайрер Э., Нерсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи: Пер. с англ. - М.: Мир, 1990. 512 c.

24. Современные численные методы решения обыкновенных дифференциальных уравнений / Под ред. Дж. Холла, Дж. Уатта. М.: Мир, 1979. 312 c.

25. Деккер К., Вервер Я. Устойчивость методов Рунге-Кутты для жестких нелинейных дифференциальных уравнений.- М.: Мир, 1988. 332 c.

26. Олемской И. В. О численном методе интегрирования систем обыкновенных дифференциальных уравнений // Оптимальное управление в механических системах. Л., 1983. C.178-185.

27. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров: Учеб. пособие. – М.: Высш. Шк., 1994. – 544 с.


Похожие работы
Покупка готовой работы
Название: «Элементы теории погрешностей»
Раздел: Рефераты по математике
Тип: Контрольная работа
Страниц: 12
Год: 2016
Цена: 900 руб.

*

С условиями покупки работы согласен(-на).


Не нашли что искали?
Устали искать нужную курсовую, реферат или диплом?
Закажите написание авторской работы на Зачётик.Ру!


А так же: Отчёты по практике | Семестровые работы | Эссе и другие работы

Наши специалисты выполняют заказы по любым темам и дисциплинам.
Средний балл наших работ: 4,9
Мы помогли 8456 студентам.